

UPDATE: DEVELOPMENT OF SPRINKLER PROTECTION FOR LIB ENERGY STORAGE SYSTEMS

Ben Ditch

FM Global

Determine sprinkler protection guidance for ESS located within commercial occupancies.

- Task 1: Determine an ignition scenario to induce thermal runaway via small-scale tests at the ESS module level.
- Task 2: Conduct free-burn fires to provide a hazard assessment representative of the wide range of commercial ESS designs.
- Task 3: Evaluate sprinkler system performance that applies to the majority of locations where an ESS may be found within a commercial occupancy.

Battery Description				
Chemistry	LFP	LMO / NMC		
Capacity (Ah)	20	32.5		
Voltage (VDC)	3.3V	3.75		
Format	Prismatic			
Module Description				
Capacity (Ah)	120	130		
Voltage (VDC)	42.9	60		
Battery Quantity	78	64		
Rack Description				
Voltage (VDC)	686	960		
Module Layout	2 wide × 8 tall			

Footprint: ~30 in. wide × 30 in. deep

-	dans.	-	M	
BMS				
8	15	16	h	
	13	14	I	
	11	12	ı	
	9	10		
	7	8	d	
	5	6		
	3	4		
Total Services	1	2		

Sprinkler Protection

Water Demand*

- NFPA 13
 - EH1: 0.3 gpm/ft² (12 mm/min)
 - EH2: 0.4 gpm/ft² (16 mm/min)
- DS 3-26
 - HC-3: 0.3 gpm/ft² (12 mm/min)
 - Ceilings < 30 ft (9.1 m)

Sprinkler System Design

- K5.6 gpm/psi² (81 lpm/bar^{1/2})
- 0.3 gpm/ft² (12 mm/min)
- 155°F (70°C)
- QR, Pendent
- Ceiling-to-link: 1 ft (0.3 m)
- Spacing: 10 × 10 ft (3 × 3 m)

^{*}Demand area typically ≥ 2500 ft² (230 m²)

Sprinkler Operation

1:34:00 - 1:44:00

- Temperature
 - Modules
 - Rack walls

Sprinkler Operation

- Surroundings
- Corner wall

Evaluation Criteria

- Sprinkler operations
- Heat flux at:
 - Room corner walls
 - Surrounding equipment
- Temperature at:
 - Side walls of the ESS
 - Ceiling and steel TCs

Heat Flux Threshold

- Noncombustible surfaces/items
 - $\le 27 \text{ kW/m}^2$
 - ~ represents damage steel / glass
- Combustible surfaces
 - $\le 12.5 \text{ kW/m}^2$
 - ~ nominal critical value for ignition of cellulosic and plastic materials

No pass/fail criteria

Additional Considerations

- Extent of damage to battery modules based on post-test inspection
- Total energy release and heat flux compared to free-burn
- Reignition

Comparison at Peak Exposure

Summary | Work in Progress

- Developing sprinkler protection guidance for ESS
- Conducted large-scale free burn and sprinklered fire test on two ESS chemistries
- Identify additional installation considerations
- Full report and videos will be publicly available

